Overshooting convective clouds

Water vapour transport to the stratosphere driven by thunderstorm activity

J. K. Nielsen <jkn@dmi.dk>

TEA-IS, Malaga, June 21st 2012

Thunderstorm Effects on the Atmosphere-Ionosphere System
Overshooting convective clouds

Outline

Water in the stratosphere

Why is water interesting?

What controls the stratospheric water content?

Overshooting deep convection
 Tropical Stratospheric Clouds
 11 μm climatology (PATMOS-x)
 Model

Phenomenological relation

Ideas and perspectives

Conclusions
Water in the stratosphere

Methane oxidation, triggered by UV

$$\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$$

Water transport

Tropopause 16 km

(Plot from Pommereau and Khaykin)
Overshooting convective clouds

Water in the stratosphere

UARS HALOE 2.5- 11 \(\mu \) m
Overshooting convective clouds

Water in the stratosphere

H$_2$O+2CH$_4$ anomaly 20S–20N

Randel (2006)
Overshooting convective clouds

Water in the stratosphere

Hurst et al. JGR (2011)
Overshooting convective clouds

Why is water interesting?

Why is water interesting?

Solomon et. al (2010)
What controls the stratospheric water content?
Overshooting convective clouds

What controls the stratospheric water content?

Dehydration at the tropopause

Correlation between tropopause temperature and stratospheric water: 0.81 Fueglistaler (2005)

(Anti) correlation between residual vertical velocity and stratospheric water -0.66. Castanheira (2012 in review ACPD)

Figure 1. Tropical mean (30°S to 30°N) water vapor mixing ratios in the lowermost stratosphere at 400 K \([\text{H}_2\text{O}]_{400}\) and \([\text{H}_2\text{O}]_{t}\). (a) Model results (black) and model results for \([\text{H}_2\text{O}]_{t}\) (grey), (b) Model results (black) and HALOE (red), and (c) Model, HALOE, and MLS. The water vapor data were derived from the HALOE and Aura MLS instruments. Both time series were smoothed by a 5-month running mean and normalized by their respective standard deviations. The time series of the residual vertical velocity loads the water vapor by 5 months. This means that the time series of the residual vertical velocity is shifted five months to the left in the plot.
Overshooting convective clouds

what controls the stratospheric water content?

Hydration from overshooting convection
Tropical Stratospheric Clouds

Khaykin et al. (2009)

Nielsen et al. (2007)
Overshooting convective clouds

Intensity of clouds with $T_B < 200$ K (OCEAN!)
Overshooting convective clouds

- Overshooting deep convection
- 11 μm climatology (PATMOS-x)

Intensity of clouds with $T_B < 200$ K (LAND!)
Overshooting convective clouds

Overshooting deep convection

11 μm climatology (PATMOS-x)

Intensity of clouds with $T_B < T_{\text{tropopause}}$ (LAND!)

![Graph showing the intensity of clouds with $T_B < T_{\text{tropopause}}$ over time and latitude.](image)

- **Latitude (deg.)**: -40, -20, 0, 20, 40
- **TSC frequency**: 0, 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003
Overshooting convective clouds

Overshooting deep convection

Model

\[\dot{x} = -k(x - a) + cd(t) \]

\(x = \text{Water Vapour Mixing Ratio} \)
\(d = \text{Tropical Stratospheric Cloud -frequency} \)
\(a = \text{Mixing ratio of slow ascending air.} \)
Overshooting convective clouds

Phenomenological relation

Phenomenological relation

\[r_C = 0.87 \]

\(\ast \) HALOE 16–17 km

\(\ast \) TSC 4 to 20 deg.
Overshooting convective clouds

Phenomenological relation

$r_c = 0.64$

H2O Mixing R.

Time (years)

H2O+2CH4 anomaly 20S–20N

Height (km)

Pressure (hPa)

Year

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
Overshooting convective clouds

Ideas and perspectives

Explain QBO! ← Lightening data / Shumann resonances / PATMOS-x
Explain stratospheric water SWOOSH, 2 decades, (SAGE, HALOE, MLS) (Rosenlof)
Characterize thunderstorms with GNSS RO data. (Biondi 2011)
Conclusions

- Tropical stratospheric clouds correlate well with stratospheric Water Vapour Mixing Ratio
- Still a lot to do

lunch
RHW = exp \left(- \frac{\vec{p} \sigma q}{\varepsilon_0 k_B T} \right).
Overshooting convective clouds

Conclusions

Radiation Transmitted by the Atmosphere

Radiative Forcing Components

(Wikipedia)
Overshooting convective clouds

Conclusions

UARS HALOE 2.5- 11 \(\mu m \)
Overshooting convective clouds

Conclusions
Overshooting convective clouds

Conclusions

CO_2 forcing + natural variability
Overshooting convective clouds

Conclusions

Earth with stratosphere